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Abstract—The shortest route at present for the asymmetric synthesis of 3,4-diepipolyoxamic acid 2 and the isomer of polyoxamic
acid 5 has been developed via the diastereoselective aldol reaction of camphor-based tricyclic iminolactones 3 and 4 with good
stereoselectivities (dr: 12:1 and 9:1) and high yields.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The 1,2-amino alcohol fragment is found in many
natural products, in particular as a central moiety of
non-proteingenic acids and amino polyols. An impor-
tant example of the above class is polyoxamic acid 1
(Fig. 1), which is the key component amino acid of the
polyoxins usually as nucleoside antibiotics.1 Sphingo-
fungins, which inhibit serinepalmitoyl transferase,2 also
consist of polyhydroxy amino acid 2 head groups. Inter-
ests in the field of chemistry and biology have led to the
development of a number of syntheses of polyoxamic
acid and its derivatives over the past several years.3

Recently, we have accomplished an efficient asymmetric
syntheses of a-amino acids4 using our chiral templets,
tricyclic iminolactones 3 and 4, which were synthesized
from natural (1R)-(+)-camphor in over 50% total yield,
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Figure 1.
as the glycine equivalents for the asymmetric synthesis
of a-amino acids. Herein, we targeted polyhydroxy
amino acids 2 and 5, which associate with a program
on the asymmetric synthesis of sphingofungin. The key
features of our proposed route involve: (1) the diastereo-
selective aldol reaction to afford the primary amino alco-
hols (2S,3R,4R)-7 and (2R,3S,4R)-8, with structured
two stereocenters in one step; (2) endo-products which
were only obtained because of the rigid skeleton of
our templet iminolactones 3 and 4. Thus, only two
compounds from four isomers were found in good ratios
between these two epimers; (3) chiral auxiliaries (2-exo-
hydroxyepicamphor4a and 3-exo-hydroxycamphor4b)
can be recycled quantitatively; and (4) all reaction mate-
rials are inexpensive, readily available with the method
being practical, and the shortest one at present.

2,3-O-(Isopropylidene)-DD-glyceraldehyde 6 was easily
obtained through two steps from DD-mannitol.5 Aldol
reactions were performed by 3 and 4 with LDA in
THF at �78 �C (Scheme 1). Lithium chloride as an
additive can improve the stereoselectivity (Table 1).
The polyhydroxy amino acid derivatives were obtained.6

The optical rotations and melting point of compounds 7
and 8 are as follows: (2S,3R,4R)-7, mp 144–145 �C,
½a�22D = +51.0 (c 1.0, CH2Cl2) and (2S,3S,4R)-7 (epi-7),
mp 63–64 �C, ½a�22D = +111 (c 1.0, CH2Cl2); (2R,3S,4R)-
8, mp 71–72 �C, ½a�22D = �10.0 (c 0.7, CH2Cl2) and
(2R,3R,4R)-8 (epi-8), mp 120–121 �C, ½a�22D = �188 (c
1.0, CH2Cl2).
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Figure 3. X-ray structure of (2S,3R,4R)-7.
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Scheme 1. Reagents and conditions: (a) LDA, THF, additive, �78 �C; (b) (1) 4 M HCl, rt, 2 h; (2) 0.6 M NH3ÆH2O, Dowex 50W X8 (H+).

Table 1. Aldol reaction of iminolactones 3 and 4 with 6

Substrate Additive Dra Yieldb (%)

3 — (2S,3R):(2S,3S):(2R,3S):(2R,3R) = 4:1:0:0 88

3 LiCl (3 equiv) (2S,3R):(2S,3S):(2R,3S):(2R,3R) = 12:1:0:0 85

4 — (2R,3S):(2R,3R):(2S,3S):(2S,3R) = 3:1:0:0 85

4 LiCl (3 equiv) (2R,3S):(2R,3R):(2S,3S):(2S,3R) = 9:1:0:0 83

a The ratios were measured by 1H NMR of the crude products on a Varian Mercury-400 MHz.
b The reported yields were isolated total yields.
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The mechanism of the stereoselective aldol reactions can
be rationalized to form six-membered ring in the pres-
ence of lithium ion by taking into account two possible
transition state models (Fig. 2). For substrate 3, transi-
tion state I (attacked from the Si face) would bear steric
interaction between the 1,2-O-(isopropylidene)-ethylene-
glycol group and the ring of the tricyclic iminolactone.
The orientation of the aldehyde is dictated by the steric
interactions and favors attack at the Re face of the car-
bonyl (TSII). For substrate 4, the favored attack of the
carbanion is from the Si face of the carbonyl (TSIII).
The primary products (2S,3R,4R)-7 and (2R,3S,4R)-8,
were performed, respectively. X-ray structure of
(2S,3R,4R)-77 proved the favored transition state model
and that the hydroxyl group of these products is at the
endo position of iminolactones (Fig. 3). The absolute
configuration was also confirmed by the specific rota-
tions of their hydrolyzed products by comparison
with known compounds. (2R)-7 and (2S)-8 were not ob-
tained. This is in agreement with our former results, be-
cause the C12-methyl group of camphor should be able
to block the top face in the aldol step and thus exhibiting
good diastereoselectivity in that tricyclic skeleton is
more rigid than a monocyclic system.
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Figure 2. Possible transition states.
Treatment of (2S,3R,4R)-7 with 4 M HCl in methanol
solvent at room temperature for 2 h and then concentra-
tion under reduced pressure with the residue dissolved in
aqueous ammonium hydroxide (0.6 M, 4 mL), and
chromatographed through a column of Dowex 50W
X8 (H+) gave (2S,3R,4R)-polyhydroxy amino acid 2
(3,4-diepipolyoxamic acid), mp 145–150 �C (dec), ½a�21D =
�18.0 (c 0.43, H2O) {lit.3l mp 148–152 �C (dec),
½a�27D = �17.9 (c 0.24, H2O)}. Analogously, the epimer
of 2 (epi-2, 4-epipolyoxamic acid), mp 182–195 �C
(dec), ½a�21D = +4.5 (c 0.74, H2O) {lit.3o [a]D = +5.0 (c
0.2, H2O)}, (2R,3S,4R)-3,4,5-trihydroxy-2-amino penta-
noic acid 5, (2,4-diepipolyoxamic acid), mp 162–
166 �C (dec), ½a�21D = �2.3 (c 0.42, H2O) {lit.3o

[a]D = �2.7 (c 0.2, H2O)} and the epimer of 5 [epi-5,
(�)-polyoxamic acid], mp 178–185 �C (dec), ½a�21D =
�5.0 (c 1.0, H2O) {lit.3r mp 163–171 �C (dec),
½a�23D = �5.1 (c 1.0, H2O)} were obtained in high yields
(90–95%).
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2. Conclusion

In summary, we have reported a practical and conve-
nient new asymmetric synthesis for polyhydroxy amino
acids utilizing camphor-based tricyclic iminolactones 3
and 4. Two stereocenters can be constructed with good
distereoselectivity in one step via an asymmetric aldol
reaction by the use of the chiral templet 3 and 4, which
possess the characteristic rigid framework. Deprotection
of the chiral auxiliary and isopropylidene can be carried
out in one step and high yield (90–95%). Using a similar
protocol, the synthesis of sphingofungins and polyoxins
in our laboratory is currently in progress.
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